Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 151 - 175 of 185 results
151.

Optoregulated Protein Release from an Engineered Living Material.

blue YtvA E. coli Transgene expression
Adv Biosyst, 17 Dec 2018 DOI: 10.1002/adbi.201800312 Link to full text
Abstract: Developing materials to encapsulate and deliver functional proteins inside the body is a challenging yet rewarding task for therapeutic purposes. High production costs, mostly associated with the purification process, short-term stability in vivo, and controlled and prolonged release are major hurdles for the clinical application of protein-based biopharmaceuticals. In an attempt to overcome these hurdles, herein, the possibility of incorporating bacteria as protein factories into a material and externally controlling protein release using optogenetics is demonstrated. By engineering bacteria to express and secrete a red fluorescent protein in response to low doses of blue light irradiation and embedding them in agarose hydrogels, living materials are fabricated capable of releasing proteins into the surrounding medium when exposed to light. These bacterial hydrogels allow spatially confined protein expression and dosed protein release over several weeks, regulated by the area and extent of light exposure. The possibility of incorporating such complex functions in a material using relatively simple material and genetic engineering strategies highlights the immense potential and versatility offered by living materials for protein-based biopharmaceutical delivery.
152.

High-resolution Patterned Biofilm Deposition Using pDawn-Ag43.

blue YtvA E. coli Transgene expression Control of cell-cell / cell-material interactions
J Vis Exp, 23 Oct 2018 DOI: 10.3791/58625 Link to full text
Abstract: Spatial structure and patterning play an important role in bacterial biofilms. Here we demonstrate an accessible method for culturing E. coli biofilms into arbitrary spatial patterns at high spatial resolution. The technique uses a genetically encoded optogenetic construct-pDawn-Ag43-that couples biofilm formation in E. coli to optical stimulation by blue light. We detail the process for transforming E. coli with pDawn-Ag43, preparing the required optical set-up, and the protocol for culturing patterned biofilms using pDawn-Ag43 bacteria. Using this protocol, biofilms with a spatial resolution below 25 μm can be patterned on various surfaces and environments, including enclosed chambers, without requiring microfabrication, clean-room facilities, or surface pretreatment. The technique is convenient and appropriate for use in applications that investigate the effect of biofilm structure, providing tunable control over biofilm patterning. More broadly, it also has potential applications in biomaterials, education, and bio-art.
153.

A Single-Component Optogenetic System Allows Stringent Switch of Gene Expression in Yeast Cells.

blue CRY2/CIB1 VVD S. cerevisiae Cell cycle control Transgene expression
ACS Synth Biol, 4 Sep 2018 DOI: 10.1021/acssynbio.8b00180 Link to full text
Abstract: Light is a highly attractive actuator that allows spatiotemporal control of diverse cellular activities. In this study, we developed a single-component light-switchable gene expression system for yeast cells, termed yLightOn system. The yLightOn system is independent of exogenous cofactors, and exhibits more than a 500-fold ON/OFF ratio, extremely low leakage, fast expression kinetics, and high spatial resolution. We demonstrated the usefulness of the yLightOn system in regulating cell growth and cell cycle by stringently controlling the expression of His3 and ΔN Sic1 genes, respectively. Furthermore, we engineered a bidirectional expression module that allows the simultaneous control of the expression of two genes by light. With ClpX and ClpP as the reporters, the fast, quantitative, and spatially specific degradation of ssrA-tagged protein was observed. We suggest that this single-component optogenetic system will be immensely helpful in understanding cellular gene regulatory networks and in the design of robust genetic circuits for synthetic biology.
154.

Spatiotemporal control of zebrafish (Danio rerio) gene expression using a light-activated CRISPR activation system.

blue CRY2/CIB1 HEK293T ZF4 Transgene expression
Gene, 1 Aug 2018 DOI: 10.1016/j.gene.2018.07.077 Link to full text
Abstract: CRISPR activation (CRISPRa) system is the convenient tool for targeted-gene activation, it has been developed and combined with a lighting-based system that can control transcription initiation spatially and temporally by utilizing photoreceptor derived from plant Arabidopsis thaliana. A blue light photoreceptor the Cryptochrome 2 (CRY2), and its binding partner CIB1 will dimerize by exposure to the blue light and it has been applied to human cells. However, the application of a combination of these two systems to zebrafish cell is still not explored. We performed zebrafish gene activation using p65 and VP64 activators in the zebrafish cells (ZF4). Our study demonstrated that we have successfully controlled the transcription level of ASCL1a, BCL6a, and HSP70 genes using blue light-activated CRISPR activation system. The result showed that using this system, mRNA level expression of ASCL1a, BCL6a, and HSP70 genes increased after irradiated under blue light for several hours and significantly different to those which treated in the dark.
155.

Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast.

blue NcWC1-LOV VVD S. cerevisiae Transgene expression Control of cell-cell / cell-material interactions
MBio, 31 Jul 2018 DOI: 10.1128/mbio.00626-18 Link to full text
Abstract: Optogenetic switches permit accurate control of gene expression upon light stimulation. These synthetic switches have become a powerful tool for gene regulation, allowing modulation of customized phenotypes, overcoming the obstacles of chemical inducers, and replacing their use by an inexpensive resource: light. In this work, we implemented FUN-LOV, an optogenetic switch based on the photon-regulated interaction of WC-1 and VVD, two LOV (light-oxygen-voltage) blue-light photoreceptors from the fungus Neurospora crassa When tested in yeast, FUN-LOV yields light-controlled gene expression with exquisite temporal resolution and a broad dynamic range of over 1,300-fold, as measured by a luciferase reporter. We also tested the FUN-LOV switch for heterologous protein expression in Saccharomyces cerevisiae, where Western blot analysis confirmed strong induction upon light stimulation, surpassing by 2.5 times the levels achieved with a classic GAL4/galactose chemical-inducible system. Additionally, we utilized FUN-LOV to control the ability of yeast cells to flocculate. Light-controlled expression of the flocculin-encoding gene FLO1, by the FUN-LOV switch, yielded flocculation in light (FIL), whereas the light-controlled expression of the corepressor TUP1 provided flocculation in darkness (FID). Altogether, the results reveal the potential of the FUN-LOV optogenetic switch to control two biotechnologically relevant phenotypes such as heterologous protein expression and flocculation, paving the road for the engineering of new yeast strains for industrial applications. Importantly, FUN-LOV's ability to accurately manipulate gene expression, with a high temporal dynamic range, can be exploited in the analysis of diverse biological processes in various organisms.IMPORTANCE Optogenetic switches are molecular devices which allow the control of different cellular processes by light, such as gene expression, providing a versatile alternative to chemical inducers. Here, we report a novel optogenetic switch (FUN-LOV) based on the LOV domain interaction of two blue-light photoreceptors (WC-1 and VVD) from the fungus N. crassa In yeast cells, FUN-LOV allowed tight regulation of gene expression, with low background in darkness and a highly dynamic and potent control by light. We used FUN-LOV to optogenetically manipulate, in yeast, two biotechnologically relevant phenotypes, heterologous protein expression and flocculation, resulting in strains with potential industrial applications. Importantly, FUN-LOV can be implemented in diverse biological platforms to orthogonally control a multitude of cellular processes.
156.

A light-controlled cell lysis system in bacteria.

blue YtvA E. coli Transgene expression Cell death
J Ind Microbiol Biotechnol, 8 May 2018 DOI: 10.1007/s10295-018-2034-4 Link to full text
Abstract: Intracellular products (e.g., insulin), which are obtained through cell lysis, take up a big share of the biotech industry. It is often time-consuming, laborious, and environment-unfriendly to disrupt bacterial cells with traditional methods. In this study, we developed a molecular device for controlling cell lysis with light. We showed that intracellular expression of a single lysin protein was sufficient for efficient bacterial cell lysis. By placing the lysin-encoding gene under the control of an improved light-controlled system, we successfully controlled cell lysis by switching on/off light: OD600 of the Escherichia coli cell culture was decreased by twofold when the light-controlled system was activated under dark condition. We anticipate that our work would not only pave the way for cell lysis through a convenient biological way in fermentation industry, but also provide a paradigm for applying the light-controlled system in other fields of biotech industry.
157.

Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications.

red DrBphP C. elegans in vivo Transgene expression
J Biol Chem, 25 Apr 2018 DOI: 10.1074/jbc.ra118.003069 Link to full text
Abstract: Genetically targeting biological systems to control cellular processes with light is the concept of optogenetics. Despite impressive developments in this field, underlying molecular mechanisms of signal transduction of the employed photoreceptor modules are frequently not sufficiently understood to rationally design new optogenetic tools. Here, we investigate the requirements for functional coupling of red light-sensing phytochromes with non-natural enzymatic effectors by creating a series of constructs featuring the Deinococcus radiodurans bacteriophytochrome linked to a Synechocystis guanylate/adenylate cyclase. Incorporating characteristic structural elements important for cyclase regulation in our designs, we identified several red light-regulated fusions with promising properties. We provide details of one light-activated construct with low dark-state activity and high dynamic range that outperforms previous optogenetic tools in vitro and expands our in vivo toolkit, as demonstrated by manipulation of Caenorhabditis elegans locomotor activity. The full-length crystal structure of this phytochrome-linked cyclase revealed molecular details of photoreceptor-effector coupling, highlighting the importance of the regulatory cyclase element. Analysis of conformational dynamics by hydrogen-deuterium exchange in different functional states enriched our understanding of phytochrome signaling and signal integration by effectors. We found that light-induced conformational changes in the phytochrome destabilize the coiled-coil sensor-effector linker, which releases the cyclase regulatory element from an inhibited conformation, increasing cyclase activity of this artificial system. Future designs of optogenetic functionalities may benefit from our work, indicating that rational considerations for the effector improve the rate of success of initial designs to obtain optogenetic tools with superior properties.
158.

Optogenetic regulation of engineered cellular metabolism for microbial chemical production.

blue EL222 S. cerevisiae Transgene expression
Nature, 21 Mar 2018 DOI: 10.1038/nature26141 Link to full text
Abstract: The optimization of engineered metabolic pathways requires careful control over the levels and timing of metabolic enzyme expression. Optogenetic tools are ideal for achieving such precise control, as light can be applied and removed instantly without complex media changes. Here we show that light-controlled transcription can be used to enhance the biosynthesis of valuable products in engineered Saccharomyces cerevisiae. We introduce new optogenetic circuits to shift cells from a light-induced growth phase to a darkness-induced production phase, which allows us to control fermentation with only light. Furthermore, optogenetic control of engineered pathways enables a new mode of bioreactor operation using periodic light pulses to tune enzyme expression during the production phase of fermentation to increase yields. Using these advances, we control the mitochondrial isobutanol pathway to produce up to 8.49 ± 0.31 g l-1of isobutanol and 2.38 ± 0.06 g l-1of 2-methyl-1-butanol micro-aerobically from glucose. These results make a compelling case for the application of optogenetics to metabolic engineering for the production of valuable products.
159.

Biofilm Lithography enables high-resolution cell patterning via optogenetic adhesin expression.

blue YtvA E. coli Transgene expression Control of cell-cell / cell-material interactions
Proc Natl Acad Sci USA, 19 Mar 2018 DOI: 10.1073/pnas.1720676115 Link to full text
Abstract: Bacterial biofilms represent a promising opportunity for engineering of microbial communities. However, our ability to control spatial structure in biofilms remains limited. Here we engineerEscherichia coliwith a light-activated transcriptional promoter (pDawn) to optically regulate expression of an adhesin gene (Ag43). When illuminated with patterned blue light, long-term viable biofilms with spatial resolution down to 25 μm can be formed on a variety of substrates and inside enclosed culture chambers without the need for surface pretreatment. A biophysical model suggests that the patterning mechanism involves stimulation of transiently surface-adsorbed cells, lending evidence to a previously proposed role of adhesin expression during natural biofilm maturation. Overall, this tool-termed "Biofilm Lithography"-has distinct advantages over existing cell-depositing/patterning methods and provides the ability to grow structured biofilms, with applications toward an improved understanding of natural biofilm communities, as well as the engineering of living biomaterials and bottom-up approaches to microbial consortia design.
160.

Light induced expression of β-glucosidase in Escherichia coli with autolysis of cell.

blue YtvA E. coli Transgene expression
BMC Biotechnol, 7 Nov 2017 DOI: 10.1186/s12896-017-0402-1 Link to full text
Abstract: β-Glucosidase has attracted substantial attention in the scientific community because of its pivotal role in cellulose degradation, glycoside transformation and many other industrial processes. However, the tedious and costly expression and purification procedures have severely thwarted the industrial applications of β-glucosidase. Thus development of new strategies to express β-glucosidases with cost-effective and simple procedure to meet the increasing demands on enzymes for biocatalysis is of paramount importance.
161.

Optogenetic regulation of artificial microRNA improves H2 production in green alga Chlamydomonas reinhardtii.

blue CRY2/CIB1 C. reinhardtii Transgene expression
Biotechnol Biofuels, 7 Nov 2017 DOI: 10.1186/s13068-017-0941-7 Link to full text
Abstract: Chlamydomonas reinhardtii is an ideal model organism not only for the study of basic metabolic processes in both plants and animals but also the production of biofuels including hydrogen. Transgenic analysis of C. reinhardtii is now well established and very convenient, but inducible exogenous gene expression systems remain under-studied. The most commonly used heat shock-inducible system has serious effects on algal cell growth and is difficult and costly to control in large-scale culture. Previous studies of hydrogen photoproduction in Chlamydomonas also use this heat-inducible system to activate target gene transcription and hydrogen synthesis.
162.

Optogenetics Manipulation Enables Prevention of Biofilm Formation of Engineered Pseudomonas aeruginosa on Surfaces.

blue YtvA P. aeruginosa Transgene expression Control of cell-cell / cell-material interactions
ACS Synth Biol, 31 Oct 2017 DOI: 10.1021/acssynbio.7b00273 Link to full text
Abstract: Synthetic biologists have attempted to solve real-world problems, such as those of bacterial biofilms, that are involved in the pathogenesis of many clinical infections and difficult to eliminate. To address this, we employed a blue light responding system and integrated it into the chromosomes of Pseudomonas aeruginosa. With making rational adaptions and improvements of the light-activated system, we provided a robust and convenient means to spatiotemporally control gene expression and manipulate biological processes with minimal perturbation in P. aeruginosa. It increased the light-induced gene expression up to 20-fold. Moreover, we deliberately introduced a functional protein gene PA2133 containing an EAL domain to degrade c-di-GMP into the modified system, and showed that the optimally engineered optogenetic tool inhibited the formation of P. aeruginosa biofilms through the induction of blue light, resulting in much sparser and thinner biofilms. Our approach establishes a methodology for leveraging the tools of synthetic biology to guide biofilm formation and engineer biofilm patterns with unprecedented spatiotemporal resolution. Furthermore, the findings suggest that the synthetic optogenetic system may provide a promising strategy that could be applied to control and fight biofilms.
163.

Optimized light-inducible transcription in mammalian cells using Flavin Kelch-repeat F-box1/GIGANTEA and CRY2/CIB1.

blue CRY2/CIB1 FKF1/GI HEK293T human primary dermal fibroblasts isolated MEFs NIH/3T3 Transgene expression
Nucleic Acids Res, 10 Oct 2017 DOI: 10.1093/nar/gkx804 Link to full text
Abstract: Light-inducible systems allow spatiotemporal control of a variety of biological activities. Here, we report newly optimized optogenetic tools to induce transcription with light in mammalian cells, using the Arabidopsis photoreceptor Flavin Kelch-repeat F-box 1 (FKF1) and its binding partner GIGANTEA (GI) as well as CRY2/CIB1. By combining the mutagenesis of FKF1 with the optimization of a split FKF1/GI dimerized Gal4-VP16 transcriptional system, we identified constructs enabling significantly improved light-triggered transcriptional induction. In addition, we have improved the CRY2/CIB1-based light-inducible transcription with split construct optimization. The improvements regarding the FKF1/GI- and CRY2/CIB1-based systems will be widely applicable for the light-dependent control of transcription in mammalian cells.
164.

An Engineered Optogenetic Switch for Spatiotemporal Control of Gene Expression, Cell Differentiation, and Tissue Morphogenesis.

blue CRY2/CIB1 C3H/10T1/2 HEK293T mouse in vivo Transgene expression Cell differentiation Developmental processes Nucleic acid editing
ACS Synth Biol, 9 Aug 2017 DOI: 10.1021/acssynbio.7b00147 Link to full text
Abstract: The precise spatial and temporal control of gene expression, cell differentiation, and tissue morphogenesis has widespread application in regenerative medicine and the study of tissue development. In this work, we applied optogenetics to control cell differentiation and new tissue formation. Specifically, we engineered an optogenetic "on" switch that provides permanent transgene expression following a transient dose of blue light illumination. To demonstrate its utility in controlling cell differentiation and reprogramming, we incorporated an engineered form of the master myogenic factor MyoD into this system in multipotent cells. Illumination of cells with blue light activated myogenic differentiation, including upregulation of myogenic markers and fusion into multinucleated myotubes. Cell differentiation was spatially patterned by illumination of cell cultures through a photomask. To demonstrate the application of the system to controlling in vivo tissue development, the light inducible switch was used to control the expression of VEGF and angiopoietin-1, which induced angiogenic sprouting in a mouse dorsal window chamber model. Live intravital microscopy showed illumination-dependent increases in blood-perfused microvasculature. This optogenetic switch is broadly useful for applications in which sustained and patterned gene expression is desired following transient induction, including tissue engineering, gene therapy, synthetic biology, and fundamental studies of morphogenesis.
165.

A calcium- and light-gated switch to induce gene expression in activated neurons.

blue AsLOV2 CRY2/CIB1 EL222 HEK293T mouse in vivo rat hippocampal neurons Transgene expression
Nat Biotechnol, 26 Jun 2017 DOI: 10.1038/nbt.3902 Link to full text
Abstract: Despite recent advances in optogenetics, it remains challenging to manipulate gene expression in specific populations of neurons. We present a dual-protein switch system, Cal-Light, that translates neuronal-activity-mediated calcium signaling into gene expression in a light-dependent manner. In cultured neurons and brain slices, we show that Cal-Light drives expression of the reporter EGFP with high spatiotemporal resolution only in the presence of both blue light and calcium. Delivery of the Cal-Light components to the motor cortex of mice by viral vectors labels a subset of excitatory and inhibitory neurons related to learned lever-pressing behavior. By using Cal-Light to drive expression of the inhibitory receptor halorhodopsin (eNpHR), which responds to yellow light, we temporarily inhibit the lever-pressing behavior, confirming that the labeled neurons mediate the behavior. Thus, Cal-Light enables dissection of neural circuits underlying complex mammalian behaviors with high spatiotemporal precision.
166.

A light- and calcium-gated transcription factor for imaging and manipulating activated neurons.

blue AsLOV2 HEK293T in vitro mouse in vivo rat cortical neurons S. cerevisiae Transgene expression
Nat Biotechnol, 26 Jun 2017 DOI: 10.1038/nbt.3909 Link to full text
Abstract: Activity remodels neurons, altering their molecular, structural, and electrical characteristics. To enable the selective characterization and manipulation of these neurons, we present FLARE, an engineered transcription factor that drives expression of fluorescent proteins, opsins, and other genetically encoded tools only in the subset of neurons that experienced activity during a user-defined time window. FLARE senses the coincidence of elevated cytosolic calcium and externally applied blue light, which together produce translocation of a membrane-anchored transcription factor to the nucleus to drive expression of any transgene. In cultured rat neurons, FLARE gives a light-to-dark signal ratio of 120 and a high- to low-calcium signal ratio of 10 after 10 min of stimulation. Opsin expression permitted functional manipulation of FLARE-marked neurons. In adult mice, FLARE also gave light- and motor-activity-dependent transcription in the cortex. Due to its modular design, minute-scale temporal resolution, and minimal dark-state leak, FLARE should be useful for the study of activity-dependent processes in neurons and other cells that signal with calcium.
167.

Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice.

red BphS Hana3A HEK293A HeLa hMSCs mouse in vivo Neuro-2a Transgene expression Immediate control of second messengers
Sci Transl Med, 26 Apr 2017 DOI: 10.1126/scitranslmed.aal2298 Link to full text
Abstract: With the increasingly dominant role of smartphones in our lives, mobile health care systems integrating advanced point-of-care technologies to manage chronic diseases are gaining attention. Using a multidisciplinary design principle coupling electrical engineering, software development, and synthetic biology, we have engineered a technological infrastructure enabling the smartphone-assisted semiautomatic treatment of diabetes in mice. A custom-designed home server SmartController was programmed to process wireless signals, enabling a smartphone to regulate hormone production by optically engineered cells implanted in diabetic mice via a far-red light (FRL)-responsive optogenetic interface. To develop this wireless controller network, we designed and implanted hydrogel capsules carrying both engineered cells and wirelessly powered FRL LEDs (light-emitting diodes). In vivo production of a short variant of human glucagon-like peptide 1 (shGLP-1) or mouse insulin by the engineered cells in the hydrogel could be remotely controlled by smartphone programs or a custom-engineered Bluetooth-active glucometer in a semiautomatic, glucose-dependent manner. By combining electronic device-generated digital signals with optogenetically engineered cells, this study provides a step toward translating cell-based therapies into the clinic.
168.

Optogenetic perturbation and bioluminescence imaging to analyze cell-to-cell transfer of oscillatory information.

blue VVD C2C12 Transgene expression
Genes Dev, 3 Apr 2017 DOI: 10.1101/gad.294546.116 Link to full text
Abstract: Cells communicate with each other to coordinate their gene activities at the population level through signaling pathways. It has been shown that many gene activities are oscillatory and that the frequency and phase of oscillatory gene expression encode various types of information. However, whether or how such oscillatory information is transmitted from cell to cell remains unknown. Here, we developed an integrated approach that combines optogenetic perturbations and single-cell bioluminescence imaging to visualize and reconstitute synchronized oscillatory gene expression in signal-sending and signal-receiving processes. We found that intracellular and intercellular periodic inputs of Notch signaling entrain intrinsic oscillations by frequency tuning and phase shifting at the single-cell level. In this way, the oscillation dynamics are transmitted through Notch signaling, thereby synchronizing the population of oscillators. Thus, this approach enabled us to control and monitor dynamic cell-to-cell transfer of oscillatory information to coordinate gene expression patterns at the population level.
169.

Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain.

blue CRY2/CIB1 iLID HEK293T mouse in vivo primary rat hippocampal neurons Transgene expression Neuronal activity control
Nat Methods, 3 Apr 2017 DOI: 10.1038/nmeth.4234 Link to full text
Abstract: Few tools exist to visualize and manipulate neurons that are targets of neuromodulators. We present iTango, a light- and ligand-gated gene expression system based on a light-inducible split tobacco etch virus protease. Cells expressing the iTango system exhibit increased expression of a marker gene in the presence of dopamine and blue-light exposure, both in vitro and in vivo. We demonstrated the iTango system in a behaviorally relevant context, by inducing expression of optogenetic tools in neurons under dopaminergic control during a behavior of interest. We thereby gained optogenetic control of these behaviorally relevant neurons. We applied the iTango system to decipher the roles of two classes of dopaminergic neurons in the mouse nucleus accumbens in a sensitized locomotor response to cocaine. Thus, the iTango platform allows for control of neuromodulatory circuits in a genetically and functionally defined manner with spatial and temporal precision.
170.

TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control.

blue EL222 zebrafish in vivo Transgene expression Developmental processes
Development, 19 Dec 2016 DOI: 10.1242/dev.139238 Link to full text
Abstract: Here, we describe an optogenetic gene expression system optimized for use in zebrafish. This system overcomes the limitations of current inducible expression systems by enabling robust spatial and temporal regulation of gene expression in living organisms. Because existing optogenetic systems show toxicity in zebrafish, we re-engineered the blue-light-activated EL222 system for minimal toxicity while exhibiting a large range of induction, fine spatial precision and rapid kinetics. We validate several strategies to spatially restrict illumination and thus gene induction with our new TAEL (TA4-EL222) system. As a functional example, we show that TAEL is able to induce ectopic endodermal cells in the presumptive ectoderm via targeted sox32 induction. We also demonstrate that TAEL can be used to resolve multiple roles of Nodal signaling at different stages of embryonic development. Finally, we show how inducible gene editing can be achieved by combining the TAEL and CRISPR/Cas9 systems. This toolkit should be a broadly useful resource for the fish community.
171.

A light-switchable bidirectional expression system in filamentous fungus Trichoderma reesei.

blue VVD T. reesei Transgene expression
J Biotechnol, 2 Nov 2016 DOI: 10.1016/j.jbiotec.2016.11.003 Link to full text
Abstract: The filamentous fungi Trichoderma reesei is widely used in the production of cellulolytic enzymes and recombinant proteins. However, only moderate success has been achieved in expressing heterologous proteins in T. reesei. Light-dependent control of DNA transcription, and protein expression have been demonstrated in bacteria, fungi, and mammalian cells. In this study, light inducible transactivators, a "light-on" bidirectional promoter and a "light-off" promoter were constructed successfully in T. reesei for the first time. Our light inducible transactivators can homodimerize and bind to the upstream region of artificial promoters to activate or repress genes transcription. Additionally, we upgraded the light-inducible system to on-off system that can simultaneously control the expression of multiple heterologous proteins in T. reesei. Moreover, a native cellulase-free background for the expression of heterologous proteins was achieved by knocking out the genes involved in transcriptional regulation and encoding of cellulases: xyr1, cbh1, and cbh2. Our light-switchable system showed a very little background protein expression and robust activation in the blue light with significantly improved heterologous protein expression. We demonstrate that our light-switchable system has a potential application as an on/off "switch" that can simultaneously regulate the expression of multiple genes in T. reesei under native cellulase-free background.
172.

Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors.

blue VVD mouse neural progenitor cells P19 primary mouse cortical neurons Transgene expression Cell differentiation
Biochem Biophys Res Commun, 25 Sep 2016 DOI: 10.1016/j.bbrc.2016.09.124 Link to full text
Abstract: Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity.
173.

An extraordinary stringent and sensitive light-switchable gene expression system for bacterial cells.

blue VVD YtvA E. coli Control of cytoskeleton / cell motility / cell shape Transgene expression Cell death
Cell Res, 17 Jun 2016 DOI: 10.1038/cr.2016.74 Link to full text
Abstract: Light-switchable gene expression systems provide transient, non-invasive and reversible means to control biological processes with high tunability and spatiotemporal resolution. In bacterial cells, a few light-regulated gene expression systems based on photoreceptors and two-component regulatory systems (TCSs) have been reported, which respond to blue, green or red light.
174.

Development of a light-regulated cell-recovery system for non-photosynthetic bacteria.

green CcaS/CcaR E. coli Transgene expression Control of cell-cell / cell-material interactions
Microb Cell Fact, 15 Feb 2016 DOI: 10.1186/s12934-016-0426-6 Link to full text
Abstract: Recent advances in the understanding of photosensing in biological systems have enabled the use of photoreceptors as novel genetic tools. Exploiting various photoreceptors that cyanobacteria possess, a green light-inducible gene expression system was previously developed for the regulation of gene expression in cyanobacteria. However, the applications of cyanobacterial photoreceptors are not limited to these bacteria but are also available for non-photosynthetic microorganisms by the coexpression of a cyanobacterial chromophore with a cyanobacteria-derived photosensing system. An Escherichia coli-derived self-aggregation system based on Antigen 43 (Ag43) has been shown to induce cell self-aggregation of various bacteria by exogenous introduction of the Ag43 gene.
175.

Optogenetic Control of Gene Expression in Drosophila.

blue CRY2/CIB1 D. melanogaster in vivo Schneider 2 Transgene expression Neuronal activity control
PLoS ONE, 18 Sep 2015 DOI: 10.1371/journal.pone.0138181 Link to full text
Abstract: To study the molecular mechanism of complex biological systems, it is important to be able to artificially manipulate gene expression in desired target sites with high precision. Based on the light dependent binding of cryptochrome 2 and a cryptochrome interacting bHLH protein, we developed a split lexA transcriptional activation system for use in Drosophila that allows regulation of gene expression in vivo using blue light or two-photon excitation. We show that this system offers high spatiotemporal resolution by inducing gene expression in tissues at various developmental stages. In combination with two-photon excitation, gene expression can be manipulated at precise sites in embryos, potentially offering an important tool with which to examine developmental processes.
Submit a new publication to our database